- 1. Change 28.63° to degrees, minutes, seconds
- 2. Write 248° 16' 15" as a decimal to the nearest thousandth of a degree
- 3. State the angle measure represented by 3.25 rotations counterclockwise
- 4. Identify all coterminal angles between -360° and 360° for the angle 520° (hint: there are two)
- 5. Find the measure of the reference angle for 130°
- 6. Find the value of cosine for $\angle A$
- 7. Find the value of the cosecant for $\angle A$
- 8. Find the value of cotangent for $\angle A$

9. If
$$\sec \theta = \frac{5}{2}$$
, find $\cos \theta$

- 10. Find the value of tan(-360)
- 11. Find the exactly value of sec(240)
- 12. Find the exact value of $\sec \theta$ for angle θ in standard position if the point at (-4,5) lies on its terminal side
- 13. If θ is in Quadrant IV and $\cos \theta = \frac{12}{13}$, what is the value of $\tan \theta$?
- 14. Find the height of the waterfall to the nearest foot
- 15. Find the width across the pool to the nearest foot
- 16. If $0^\circ \le x \le 360^\circ$, solve for the equation $\csc x = -2$
- 17. Assuming an angle in Quadrant I, evaluate $sin(cot^{-1}\frac{12}{5})$
- 18. Given the triangle, find $m \angle B$ to the nearest tenth of a degree if a = 12 and c = 22

Round to the nearest tenth

- 19. In $\triangle ABC$, $A = \overline{42^{\circ}, B} = 68^{\circ}, c = 15$. Find a
- 20. If $A = 27.2^{\circ}, B = 67.4^{\circ}, a = 12.8$, find the area of $\triangle ABC$

- 21. In $\triangle ABC$, $A = 59^{\circ}$, b = 12, c = 4. Find a
- 22. in $\triangle ABC$, a = 4, b = 11, c = 8. Find $m \angle B$
- 23. If a = 21, b = 15, and c = 28, find the area of $\triangle ABC$
- 24. The terminal side of an angle θ in standard position coincides with the line 3x y = 0 in Quadrant III. Find $\cos \theta$ to the nearest ten-thousand (Hint: graph the linear equation)