- Use the equation y = 2x + 31)
 - a) Write a parallel line through the point (4,7)
 - b) Write a perpendicular line through the point (8,3)
- Solve the system of equations 2)

$$2x + y = 9$$

$$3x - 2y = 10$$

3) a) Match the following graphs with their parent equation

$$y = x^2$$

$$y = x^3$$

$$y = log x_{\underline{}}$$

$$y = \frac{1}{x}$$

$$y = \sqrt{x}$$
 _____ $y = e^{x}$ _____ $y = |x|$ _____

Bali Learning Center
Pre-Calc Assessment

Name_____ Date_____

Give the coordinates for the vertex, then find the zeroes of the function a) $f(x) = x^2 + 3x + 2$ b) $f(x) = 3x^2 + 18x + 15$ 4)

a)
$$f(x) = x^2 + 3x + 2$$

b)
$$f(x) = 3x^2 + 18x + 15$$

Solve the following with the quadratic formula $y = -x^2 + 3x - 10$

Solve the following by completing the square $y = 2x^2 - 4x$

- 5) a) Convert to radians 140°
 - b) Convert to degrees $\frac{3\pi}{2}$
 - c) Fill in values for the unit circle

- 6) A) Convert to log $2^x 5 = y$
 - **B)** Convert to standard form ln(x-5) = y
 - C) Change to base 10 log₂ 7
 - **D)** Simplify $\log x^2 + \log y 3 \log z$
 - **E)** $\log 2 \approx 0.301$ $\log 8 \approx 0.903$ $\log 16 =$

$$log 4 =$$